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Abstract memory to one or more items on visual display, looking for
Given the massively parallel nature of the brain an obvious a match between items (Sternberg, 1969; Schneider & Shiffrin,

question is why ar so many information processing functions serial? 1977; see Shiffrin, 1988 for review). In a same/different
In particular, this paper addresses the issue of the comparison process. response task subjects compare items in two lists looking for
Behavioral data show that in perceptual matching tasks (such as a mismatch between items (Proctor, Healy & Van Zandt,
memory scanning and visual search) prformance i 1991; Racliff & Hacker, 1981). In a conjunction search task
affected by stimulus load, in that required processing time increases
with each additional comparison item. It is arguable whether this subjects search for a target consisting of a conjunction of
indicates a processing system that performs serial comparisons, or a particular features in a field of distractor items which consist
system for which comparisons are done in parallel but reaction time of the same features but not the conjunction (Treisman &
is affected by load because of other system limitations. In this Gelade, 1980).
simulation we show that in a modular connectionist system vector A robust finding of memory or display scanning is that
transmission is possible in parallel, but the comparison process within reaction time increases in a nearly linear fashion as a function
a module must be done serially unless accuracy is sacrificed. of the number of comparisons that must be performed (e.g.,

Steinberg, 1969, Schneider & Shiffrin, 1977). This linear
This paper examines the question of the serial or parallel increase typically occurs when there is a varied mapping

nature of the comparison process, and describes the between stimuli and responses (e.g., the subject's responses to
implementation of a connectionist model designed to test the the same stimuli change from trial to trial, see Schneider &
efficiency of parallel multiple comparisons. Despite the fact Shiffrin, 1977) or under conditions of high accuracy and low
that neocortex is massively parallel in its architecture there are discriminability. These data have been interpreted by some as
many tasks for which behavioral data illustrate serial indicating a serial repetition of the perceptual comparison
processing. It is important to determine what processing process (Sternberg, 1969; Schneider & Shiffrin, 1977;
limitations induce serial processing even in the presence of Treisman & Gelade, 1980). Another interpretation of the
parallel hardware. In some cases this can be explained by linear increasing reaction time function is that all items are
limitations in the number of responses that can be made at one compared in parallel, and the effect of load on reaction time
time (Deutsch & Deutsch, 1963), by crosstalk or vector is due to other limitations of the parallel processing system
transmission interference (Schneider & Detweiler, 1987), or by (Pashler & Badgio, 1987; Proctor, Healy, & Van Zandt, 1991;
competition for limited processing resources or operators Ratcliff, 1988). If there is a well practiced consistent mapping
(Kahneman, 1973). Connectionist based modeling has between stimuli and responses then comparisons can be
emphasized the parallel nature of processing. However, even performed in parallel (see Schneider & Shiffrin, 1977)
in connectionist based vector processing systems there is a indicating the hardware can support parallel comparisons. A
need to serialize operations. With respect to the comparison reaction time function that does not increase with load
process the limitation may be due, not to limitations of the indicates preattentive, or automatic parallel processing in
system to make multiple comparisons, but to the increased which the target "pops out," and is thought to be independent
error that results from multiple comparisons in the same of the comparison process (Schneider, 1985; Treisman, 1985).
comparator. The modeling of consistent search is detailed elsewhere (Gupta

& Schneider, 1991). This paper focuses on the varied
Theories of Comparison Processes: Background mapping search in which serial processing occurs.

Psychologists have been studying the perceptual comparison There have been a variety of modeling techniques used to
process for Y,,arS using a multitude of tasks, for the most part explain the linear increase in reaction time (see Townsend &
analyzing measures of accuracy and reaction time to respond Ashby, 1983; Luce, 1986). The models take the form of
to a target in a field of distractors. In a memory scanning either ssuming the comparisons are performed sequentially,
and visual search task subjects compare one or more items in or they are performed in parallel but at a reduced rate due to

the need to share the resources that enable parallel processing.
In general, examining the mean data can not distinguish
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increases faster for the positive than the negative resporses,



then there is strong support for a serial comparison process matrix, and an output layer of units (see Figure 1). Modules
(see Townsend & Ashby, 1983; Luce, 1986). In this paper we can be added to the system in breadth, so that several input
examine why the processing must sometimes be serial even modules (Figure 1: la and 1b) connect to one higher level
with parallel hardware. module (Figure I: 2a). In addition, modules can be added to

Existing models generally do not provide an interpretation the system in depth, creating several hierarchical layers.
of why processing should be serial or resource limited. From Associated with each module are control elements (gain and
the physiological perspective there is little justification for a feedback) which manipulate signal strength within the system,
requirement that visual processing be serial. The retina and and report elements (activity and priority) which manipulate
early levels of the visual system certainly operate in parallel attentional effects.
with different retinal locations activating topographically Each module effectively has three layers making up a
distinct sections of tissue in multiple visual maps (Desimone connectionist network, including the module input layer
& Ungerleider, 1989). It may be that these parallel channels (traditionally called the hidden layer), the module output
must converge to a single comparator which becomes layer, and the data Input (which may be the output from the
inaccurate when receiving multiple inputs. The present model previous level of modules). The current simulation consists of
explicitly models such a comparator in a connectionist two modules connected hierarchically, so that the output from
simulation, and maps out accuracy as a function of the number one module feeds forward through an associative matrix to
of concurrent inputs. The simulations described in this paper become the data input to the other module.
provide evidence for serial comparisons within a single The model incorporates the recurrent nature of cortical
comparator module. Parallel comparisons are still conceivable within-column connections as seen on Layer 4 pyramidal cells.
if more than one comparator is available. However, the The modules are implemented differently from the standuti
behavioral data supports the view that human visual and three-layer connectionist network, in that the input layer of
memory processing is serial, and is likely to represent each module is recurrently connected through an auto-
processing by a single comparator in varied mapping search associative matrix to itself. In this way information input to
tasks. the module on each iteration is a function of the external input

plus internal feedback from previous transmissions. In a
Modular Organization of Cortical Anatomy hierarchically organized architecture the external input is

The present model utilizes a common modular architecture received from an input module (or modules) on the processing
and parallel processing incorporating salient features of layer below, and the strength of the external signal is
cortical processing. Cells throughout cortex (post the initial controlled by a scalar gain control element associated with the
sensory areas such as visual area VI) show similar patterns of input module. The strength of the internal feedback signal in
layering, types of cells, and local connections. The structure a module is controlled by a scalar feedback control element
of cortex is modular, with processing occurring in identical associated with that module. Thus, the gain and feedback
columns, or hypercolumns, which are highly connected within control elements function to modulate the output of a
and sparsely connected between (Mountcastle, 1979). Studies population of units in an analogous fashion to the
of V2 cortex show a structured layering system of cells and hypothesized function of the inhibitory chandelier cell
connections (Lund, Hendrickson, Ogren, & Tobi, 1981). discussed earlier. In general, the net input to a module is:
Information is transmitted through a column in a feed forward net input = (feedback * internal input) + (gain * external input),
direction through two layers of pyramidal cells. An excitatory where feedback and gain are scalar values and the internal and
signal is input to Layer 4 pyramidal cells, which project to external inputs are vectors.
layer 2-3 pyramidal cells, which in turn project out of the
column. In addition, there are recurrent connections within a Simulations. The vector space for one simulation consists
column, in which excitatory pyramidal cells feedback to of ten pairs of input and target vectors, each having a length
themselves. Inhibitory interneurons are primarily local of 50 units, with correlations of 0.15 or below within the
connections within a column, and it is thought they perform members of each input and target vector set. This is done by
gating and modulatory functions. A special class of axon- generating random vectors and discarding those with
axon inhibitory cell is the chandelier cll, which connects to correlations above 0.15. Activation levels for each vector unit
the axon initial segments of sets of pyramidal output cells range from -1.0 to 1.0, with a resting activation of 0.0. Input
(Peters, 1984). Chandelier cells have fast inhibitory effects, vectors and target vectors have unit activations set randomly
and possibly function as attentional gating devices (see to -1.0 or 1.0, and the target vector units are then clipped to -
Shedden & Schneider, 1990, Douglas & Martin. 1990). 0.9 or 0.9 respectively.

During training an input vector is presented to the system,
A Modular Connectionist Model activation is allowed to spread through the network, and the

The simulation under discussion was implemented in the error is calculated between the output vector and the target
CAP2 computer simulation environment. The general model vector. Activation of the hidden layer units are allowed to
incorporates modules, units, layers, and control elements range freely between -1.0 and 1.0. activation of the output
which can be combined in various architectural configurations. layer units are subjected to the nonlinear logistic function
A module consists of an input layer of units, a recurrently
connected auto-associative matrix, a f""d-forward associative activity --1 +2/(1 + 0".
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Figure 1: A connectonist model of cortical processing. This model consists of a two layer structure that parallels the cortical input
layer 4 pyramidal cells, and the cortical output layer 2.3 pyramidal cells. Inhibitory modulation units control the strength of the internal
feedback aid output signals (feedback and gain). Activity and priority control information is carried by report units (layer 5.6 pyramidal
cells) which truansmit to central control structures as well as directly to the inhibitory modulation units. The thick dotted line illustrates
the information flow from left to right through two modules. The CAP2 environment is described in more detail elsewhere (Schneider
& Detweiler, 1987; Detweiler & Schneider, in press; Shedden & Schneider, 1990; Gupta & Schneider. 1991).

Connection weights are changed by the back propagation of input vectors. For example, in Figure 1, modules Ia and lb
the error after each presentation (Rumeihar, Hinton, & output and activate vectors in module 2a. An input vector
Williams, 1986). At the same time the recurrent connection evokes a specific pattern of activity over the input and output
weights of the auto-association matrix at the hidden layer are layers of the module. When multiple vectors are presented
changed using the delta learning rule (see McClelland & their effect on the input layer is additive, thus when the
Rumelhart, 1988). The network is trained for 20 epochs, each vectors are similar the overall level of activity will be higher
of which consist of one presentation of all input/target vector than when they are uncorrelated (see Schneider & Oliver,
pairs in random order. At the completion of training the 1991).
system has reached the criterion of 100% accuracy and One measure of vector activity is the average sum of the
correlations of 0.94 to 0.99 between the output and target squared activity of each unit, which can be thought of in
vectors for each input pattern. geometric terms as the length of the vector. Whn two

vectors are added together, the length of the resultant vector
The Vector Comparison Task. The task set for the system is a measure of the similarity of the two vectors. The

is a simple matching task, in which vectors to be matched are resulting activity is equal to:
presented along with 1, 2, 3, or 4 comparison vectors, thus
requiring either 1, 2, 3, or 4 parallel comparisons. During
testing every input vector is used in turn as the vector to be 5.1 .1
matched (sample vector), and the comparison vectors are where n is the number of vecto- ..nits, theta is the angle
chosen randomly without replacement from the remaining between the vectors, and lxi ane 1%,, are the Euclidian lengths
vectors in the set. On positive trials, one of the comparison of the vectors x and y.
vectors is identical to the sample vector. An equal number of In a matching task a sy, .cm attempts to detect a match if
positive and negative trials are presented. On each trial the the measure of activity (or vector length) is above a set
comparison set of input vectors are added, and scaled as a criterion, and reject a match otherwise. This analysis
function of the number of inputs (e.g., the addition of from 2 examines the function of accuracy at this task with an
to 5 vectors are scaled from 0.5 to 0.2 of the single vector increasing number of parallel comparisons. A measure of
input). Activity is allowed to build in the system for 5 comparison axuracy is provided by the d' metric. The d'
iterations of external input plus internal recurrent feedback. (from SigF-l Detection Theory) is a measure of the signal
The data presented below are from 5 different sets of 10 detection sensitivity of a system, and takes into account
input/target vector pairs, processed at 4 levels of feedback possi!)Ic response biases (Tanner & Swets, 1954). There are
(discussed below), for a total of 20 simulatiors and 50 datum two distributions of possible vector activity, one in which no
points per condition. match occurs (noise), and one in which a match does occur

The measure of evaluation the network uses to determine a (signal plus noise). To achieve high accuracy the system must
match is vector activity. The vector activity is the strength oi not only detect the signal, but must make a correct rejection
the evoked vector following the summation of two or more of noise in which no signal occurs. Thus a match criterion



must be chosen so that both the probability of missing a signal distributions becomes much smaller and the region of possible
and the probability of making a false alarm to noise are low. error becomes much larger. For two comparisons the d' drops
This is only possible if sensitivity to the signal is high enough, to 0.98 with an error rate of 31%, which would not be
that is, if there is enough distance between the two acceptable for most search tasks.
distributions of noise, and signal plus noise. The d' is a These severe decrements in accuracy with parallel
measure of the distance between the means of the two comparisons are robust for different metrics of activity.
distributions in normal standard deviations, and :s therefore a Figure 3 shows d' values determined for distributions based on
measure of sensitivity that is not affected by the possible the average absolute value of vector activity as well as the
positive or negative response biases for which humans are average sum of squares, for comparisons based on the hidden
prone. From d', if one assumes a non-biased criterion it is and output layer.
possible to determine the probability for error, which is simply An important issue relating to cortical architecture is
the area under the overlapping tails of the two distributions, whether comparisons can be performed on the hidden or
A d' of 4, 3, 2, 1, or 0.5 normal standard deviations output layer. There are three reasons to suggest that a module
correspond, to an error probability of 0.02, 0.07, 0.16, 0.31, would monitor the hidden rather than the output layer. First,
or 0.4 respectively, assuming the subject makes an equal the output pyramidal cells often do not make synaptic
number of misses and false alarms. In scanning experiments connections within the layer. Second, if the output layer is
humans are generally expected to maintain accuracy above gated to control the output to the next level, the comparison
95% and hence a d' of above 3 is expected. could not be performed until the vector is transmitted to the

next level of modules. Third, when the output layer is
transmitting, the transmission to the higher level of modules

0.95. will interfere with any other potential signals. Performing the
comparison within the module allows other modules to

0.9. ] No Match transmit to the higher level modules. This is analogous to the
0.85 IMatch problem faced with data bus arbitration in computer

:0.. architectures. Each device on the bus limits its transmission

'0.75 in order to allow other devices to transmit on the bus.
Typically in computers, each device makes a priority

0.7 assessment of its internal state without transmitting on the bus.

0.65 Data is transmitted only after the device activates a bus

0.6 request and is granted permission from the bus arbitration
logic to transmit the data. For all of the above reasons it is

1 2 3 4 important to determine if the match could be performed on the
Number of Parallel Comprismm hidden versus the output layer.

Figure 2: Activity on the hidden layer is presented as a function 7
of the number of parallel comparisons. When only one 6.5 H
comparison is necessary the differen.e between the Match and No 65.5-\.i.d -"-5.5 \ -- Output 5
Match distributions is large, but decreases dramatically if multiple \ SS
comparisons must be made. The measure of activity is the 4.5 V Hidden ABS
average sum of the squared activity of each vector unit. Error OuttABS

bars indicate one standard deviation above and below the mean. 3

2.5
There is much more information contained in a vector than 2

1.5its length, and it would be possible to train a network I
specifically to distinguish between distributions of noise and 0.5
signal plus noise. However, we are interested the human 12 3 4

capacity to successfully perform comparisons on the first trial. N o P C
Number of Parallel Comparisons

Simulation Results. Figure 2 shows the activity level of

the hidden layer of the network as either 1, 2, 3, or 4 parallel Figure 3: The d' for the hidden and output layers is shown as a
comparisons are made (50 trials per condition). The measure function of the number of parallel comparisons. Two metrics of
of activity is the average sum of the squared activity of the activity are graphed, The average sum of the squared activity of
vector units. When only one comparison is required there is the vector units (SS), and the average sum of the absolute value
clear separation between the Match and the No Match of the vector units (ABS). In all cases, d' decreases dramatically
distributions (means of 0.88 and 0.73 respectively). With one if more than one comparison is made.
comparison an activity criterion can be set which results in a
d' of 3.48 and a 4% error rate. However when two or more Figure 3 graphs the d' values for both the hidden layer and
comparisons are performed the difference between the the output layer of the system- For both layers there is a



robust deficit for multiple comparisons. The output layer does and holding signals, for the categorization of incoming
show better match sensitivity for single comparisons (for information, and for signal buffering during concurrent
example, the d' of the average absolute value metric is 6.5 transmissions (see Shedden & Schneider, 1990). Third,

versus 3.62). It is unclear how relevant the increased feedback may enhance d' because the associative feedback

detection sensitivity is because human sensitivity in search will strengthen previously learned vectors. Matching vectors
tasks is usually below 4. In future investigations we will have a close resemblance to previously learned vectors. In

determine how the hidden/output layer d' differences vary as contrast, mismatching pairs represent a blending of features
a function of the nature of the squashing function (we used a that have not been learned in the auto-associative matrix.

logistic on the output layer and a step function on the hidden Figure 4 shows the effect of the strength of auto-associative
layer), vector size, and correlations among distractors and feedback on detection sensitivity. Without feedback sensitivity
targets. In the current data, d' was higher on the output layer, levels are low (d' of 2.74 and 2.15 for output and hidden
but comparisons based on the hidden layer are in the range layers) and the error rates are higher (about 10%) than those
typical of human performance. Perhaps in cases where typically observed in scanning experiments. Increasing
crosstalk can be managed and accuracy is extremely important, feedback to 0.1 improves comparison sensitivity to d'
the more effortful comparison on the transmitted output is measures of 5.60 and 3.48 respectively for the output and
beneficial. In any case, as Figure 3 illustrates, both the hidden hidden layer for a single comparison. When feedback levels
and the output layer show the harmful effects of multiple are too high distortion of signals begins to occur, and
comparisons on the probability for error. correlations between the actual and desired output vectors

drop. The noise in the distributions increases and it becomes
Levels of Feedback. The recurrent connections that are more difficult to detect a match. There appears to be an

ubiquitous throughout cortex are represented by the. auto- optimum level of internal feedback which is high enough to
association on the hidden layer in the model. As described maintain signal strength and low enough to maintain signal
above, the feedback control element modulates the strength of accuracy. The 0.1 feedback range that provided the best
the recurrent signal within a module. Four different levels of comparison sensitivity in these simulations has been shown in

feedback were tested for each number of required parallel previous simulations to be best for signal maintenance
comparisons, and results for the different conditions are shown properties as well (see Shedden & Schneider, 1990 for other
in Figure 4. When only one comparison is made, the d' is simulations dealing with feedback).
reasonably high for both the hidden and output layers at a
feedback level of 0.1, but falls off at feedback levels above Serial and parallel processing. In the present architecture,
and below 0.1. The d' is below 1.6 for any case where to respond accurately, the system must serialize the
multiple comparisons are made, and feedback has very little comparisons. For example, if four display items must be
effect. compared to one memory item, the system inputs the first

display item and the one memory item into a single
comparator module. Then the second display item and the one

6 -+- C-I OuttW memory item are input to the comparator, continuing until the
5.5 fourth display item has been compared. In this way accuracy

5 -2 can be maintained although processing time increases linearly
4.5. / C-3 (a similar argument was made by Luce (1986, p.44 4 ) for

4-. C-4 serializing comparisons in a limited short term memory). The
3.5

d/ 3 -e- C-I Hiddm need for the serial processing of comparisons predicts the

2.5 *. C-2 varied mapping search data.
2 - C-3 How can the transition to parallel processing in consistent

1.5 *C-4 search (see Shiffrin, 1988) be explained in this architecture?
I ..... ...... .. We assume that each module can associate a priority tag for

0.5 ... each learned vector at the hidden layer level. If there is a
0 .

0.0 0.1 0.2 0.4 consistent relationship in which certain stimuli are always
Level of F eedck targets, they come to evoke a high priority relative to the

distractors. Each module makes the priority assessment

internally in parallel. If only one module has a high priority
Figure 4: The d' for the hidden and output layers for each it transmits first. The reaction time for the firsi transmission
number of parallel comparisons is shown as a function of level of does not increase with the number of stimuli. This model is
feedback. The feedback element controls the strength of the detailed elsewhere (Gupta & Schneider, 1991) and provides a
internal recurrent signal. For the optimum feedback level of 0.1 good fit to practice effects in consistent search tasks.
the d' measuore is greatest, but it falls off with higher and lower
levels of feedback. Conclusions and Summary

Although the architecture of cortex is very parallel there are
There are several reaons to include feedback in the module operations that must be performed serially. One of these

making comparisns. First, input or hidden layer feedback is operations is the comparison process. This paper described
common in cortex. Second, feedback is critical for latching simulations in a modular connectionist architecture
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much noise for this to occur. In the present simulations effects in comparisons of multiletter strings. Perceptio &
Psychophysics, 42:180-194.

maches and mismatches could only be discriminated at human Proctor, R.W., Healy, A.F. & Van Zandt. T. (1991). Same-different

performance levels if the comparisons were performed serially judgments of multiletter atrings: Insensitivity to positional bias and
with modest auto-associative feedback (0.1) on the hidden spacing. Perception & Psychophysics, 49:62-72.
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